An Accurate Measure for Multilayer Perception Tolerance to Additive Weight Deviations

نویسندگان

  • José Luis Bernier
  • Julio Ortega
  • M. M. Rodríguez
  • Ignacio Rojas
  • Alberto Prieto
چکیده

The inherent fault tolerance of artificial neural networks (ANNs) is usually assumed, but several authors have claimed that ANNs are not always fault tolerant and have demonstrated the need to evaluate their robustness by quantitative measures. For this purpose, various alternatives have been proposed. In this paper we show the direct relation between the mean square error (MSE) and the statistical sensitivity to weight deviations, defining a measure of tolerance based on statistical sentitivity that we have called Mean Square Sensitivity (MSS); this allows us to predict accurately the degradation of the MSE when the weight values change and so constitutes a useful parameter for choosing between different configurations of MLPs. The experimental results obtained for different MLPs are shown and demonstrate the validity of our model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the tolerance of multilayer perceptrons by minimizing the statistical sensitivity to weight deviations

This paper proposes a version of the backpropagation algorithm which increases the tolerance of a feedforward neural network against deviations in the weight values. These changes can originate either when the neural network is mapped on a given VLSI circuit where the precision and/or weight matching are low, or by physical defects a!ecting the neural circuits. The modi"ed backpropagation algor...

متن کامل

Note on Weight Noise Injection During Training a MLP

Although many analytical works have been done to investigate the change of prediction error of a trained NN if its weights are injected by noise, seldom of them has truly investigated on the dynamical properties (such as objective functions and convergence behavior) of injecting weight noise during training. In this paper, four different online weight noise injection training algorithms for mul...

متن کامل

Convergence analysis of on-line weight noise injection training algorithms for MLP networks

Injecting weight noise during training has been proposed for almost two decades as a simple technique to improve fault tolerance and generalization of a multilayer perceptron (MLP). However, little has been done regarding their convergence behaviors. Therefore, we presents in this paper the convergence proofs of two of these algorithms for MLPs. One is based on combining injecting multiplicativ...

متن کامل

Triple Test Cross Analysis for Genetic Components of Salinity Tolerance in Spring Wheat

Soil salinity poses considerable and increasing problems for agriculture, and is receiving much attention from plant breeders. The identification of genes whose expression enables plants to adapt to and/or tolerate salt stress is essential for breeding programs, but little is known about the genetic mechanisms of traits in saline conditions. The data obtained from 75 families produced by crossi...

متن کامل

Additive slacks- based measure with undesirable output and feedback for a two-stage structure

This paper develops slacks-based measure (SBM) and additive SBM (ASBM) to evaluate efficiency of decision making units (DMUs) in a two-stage structure with undesirable outputs and feedback variables from the internal perspective. The SBM model is linearized  for a specific weight and the ASBM model is reformulated as a second order cone program. The target values for all inputs, outputs (both d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999